The correct option is
D 23limx→0 ∫x0sint2dtx(1−cosx)
Putting the limit we see that the above is in an indeterminate form ÷ so using L1 Hospital's rule
=limx→0 ddx(∫x0sint2dt)ddx(x−xcosx)
Now, in the numerator, we use Leibnitz rule which states that
ddx∫b(x)a(x)f(x)dx=f(b).dbdx−f(a)dadx ; Using this we can write
=limx→0 sinx2(1)−sin(02).(0)1−(cosx−xsinx)
=limx→0 sinx21−cosx+xsinx
Again we can see that it is in ÷ form, so employing L′ Hospital's rule.
=limx→0 cosx2(2x)+sinx+sinx+xcosx
=limx→0 2xcosx22sinx+xcosx
It is still in (÷) form, so again employing L′ Hospital's rule
=limx→0 2cosx2−4x2sinx22cosx+cosx−xsinx
=limx→0 2cosx2−4x2sinx23cosx−xsinx
=2cos(0)−03cos(0)−0
=23