Factorise the followingexpressions
(i) p2+ 6p + 8
(ii) q2− 10q + 21
(iii) p2+ 6p − 16
(i) p2+ 6p + 8
Itcan be observed that, 8 = 4 ×2 and 4 + 2 = 6
∴p2 + 6p + 8 = p2 + 2p+ 4p + 8
= p(p + 2) + 4(p + 2)
=(p + 2) (p + 4)
(ii) q2− 10q + 21
Itcan be observed that, 21 = (−7) ×(−3) and (−7) + (−3) = − 10
∴q2 − 10q + 21 = q2 −7q − 3q + 21
=q(q − 7) − 3(q − 7)
=(q − 7) (q − 3)
(iii) p2+ 6p − 16
Itcan be observed that, 16 = (−2) ×8 and 8 + (−2) = 6
p2+ 6p − 16 = p2 + 8p − 2p− 16
=p(p + 8) − 2(p + 8)
=(p + 8) (p − 2)