y−√3x=2 ---(1) and
y+√3x=2 ---(2)
From 1 & 2, y=2 and x=0
y−√3|x|=2,y>2
The y− axis is the angle bisector of the two given lines.
Let us find the coordinates of P by using the parametric form of the line.
P≡(5sin30∘,2+5cos30∘) or P≡(−5sin30∘,2+5cos30∘)
P≡(±52,2+5√32)
To find the foot of the perpendicular on the y− axis, we will draw a line parallel to the x− axis.
Hence, the coordinates of the foot of the perpendicular will be (0,4+5√32)