Since PQ is a tangent
OP⊥PQ
⟹∠OPQ=90
∠OPR+∠RPQ=90
∠OPR=90−65=25
In △OPR
OP=OR
⟹∠OPR=∠ORP=25
∠POR=180−∠OPR−∠ORP=180–50−130
∠SOP+∠POR=∠SOR=360
∠SOP=360–110–130=120
In △SOP
OS=OP
∠OSP=∠OPS
∠OSP+∠OPS=∠SOP=180
2x=180−120
x=30∘
Tangents PQ and PR are drawn to the circle from an external point P. If PQ = 9 cm, and . Find the length of the chord QR.