PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2=QM.MR.
Open in App
Solution
In △PMR, By Pythagoras theorem, (PR)2=(PM)2+(RM)2.......(1) In △PMQ, By Pythagoras theorem, (PQ)2=(PM)2+(MQ)2.......(2) In △PQR, By Pythagoras theorem, (RQ)2=(RP)2+(PQ)2........(3) ∴(RM+MQ)2=(RP)2+(PQ)2 ∴(RM)2+(MQ)2+2RM.MQ=(RP)2+(PQ)2....(4) Adding 1) and 2) we get, (PR)2+(PQ)2=2(PM)2+(RM)2+(MQ)2...(5) From 4) and 5) we get, 2RM.MQ=2(PM)2 ∴(PM)2=RM.MQ