Given:
PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm
PS = 5 cm
A is any point on PQ
QS = radius of the circle = 13 cm ...(1)
In ΔPQS
Using pythagoras theorem,
QS2 = PS2 + PQ2
⇒ 132 = 52 + PQ2
⇒ PQ2 = 169 − 25
⇒ PQ2 = 144
⇒ PQ = 12 cm = SR ...(2)
Thus,
ar(ΔRAS) = × base × height
= × SR × PS
= × 12 × 5
= 30 cm2
Hence, ar(ΔRAS) = 30 cm2.
Disclaimer: The question is to find the area of ΔRAS instead of the area of ΔPAS.