Product of 6a2–7b+5ab and 2ab is
(a) 12a3b–14ab2+10ab
(b) 12a3b–14ab2+10a2b2
(c) 6a2–7b+7ab
(d) 12a2b–7ab2+10ab
Step 1. Determine the product of 6a2–7b+5ab and 2ab.
Use the distributive property of multiplication, ab+c+d=ab+ac+ad
6a2–7b+5ab2ab=6a22ab-7b2ab+5ab2ab=6·2a2·ab-7·2b·ab+5·2ab·ab=12a2+1b-14ab1+1+10a1+1b1+1[∵am+n=am·an]=12a3b-14ab2+10a2b2
Hence, the product of 6a2–7b+5ab and 2ab is 12a3b-14ab2+10a2b2. The correct option is (b).
Find the product of the following :
3a2-2ab+7band6b2