Let P(n):1+3+5+⋯+(2n−1)=n2 be the given statement
Step 1: Put n=1
Then, L.H.S =1
R.H.S =12=1
∴ L.H.S = R.H.S
⟹ P(n) is true for n=1
Step 2: Assume_that P(n) is true for n=k
∴1+3+5+⋯+(2k−1)=k2
Adding 2k+1 on both sides, we get
1+3+5+⋯+(2k−1)+(2k+1)=k2+(2k+1)=(k+1)2
∴1+3+5+⋯+(2k−1)+(2(k+1)−1)=(k+1)2
⟹ P(n) is true for n=k+1
∴ By the principle of mathematical induction P(n) is true for all natural numbers 'n'.
Hence 1+3+5+⋯+(2n−1)=n2, for all n∈N