1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
Prove: 1+cot...
Question
Prove:
(
1
+
c
o
t
A
+
t
a
n
A
)
(
s
i
n
A
−
c
o
s
A
)
=
s
i
n
A
t
a
n
A
−
c
o
t
A
c
o
s
A
Open in App
Solution
L
.
H
.
S
=
(
1
+
cot
A
+
tan
A
)
(
sin
A
−
cos
A
)
=
(
sin
A
+
sin
A
cot
A
+
tan
A
sin
A
−
cos
A
−
cos
A
cot
A
−
tan
A
cos
A
)
=
(
sin
A
+
s
i
n
A
c
o
s
A
sin
A
+
tan
A
sin
A
−
cos
A
−
cos
A
cot
A
−
cos
A
sin
A
cos
A
)
=
(
sin
A
+
cos
A
+
tan
A
sin
A
−
cos
A
−
cos
A
cot
A
−
sin
A
)
=
tan
A
sin
A
−
c
o
s
A
c
o
t
A
=
s
i
n
A
t
a
n
A
−
c
o
t
A
c
o
s
A
=
R
.
H
.
S
P
r
o
v
e
d
.
Suggest Corrections
4
Similar questions
Q.
Prove that
(
1
+
c
o
t
A
+
t
a
n
A
)
(
s
i
n
A
−
c
o
s
A
)
=
s
e
c
A
c
o
s
e
c
2
A
−
c
o
s
e
c
A
s
e
c
2
A
=
s
i
n
A
t
a
n
A
−
c
o
t
A
c
o
s
A
Q.
Prove that
(
1
+
cot
A
+
tan
A
)
(
sin
A
−
cos
A
)
=
sin
A
tan
A
−
cot
A
cos
A
.
Q.
Prove the following trigonometric identities.
1
+
cot
A
+
tan
A
sin
A
-
cos
A
=
sec
A
cosec
2
A
-
cosec
A
sec
2
A
=
sin
A
tan
A
-
cot
A
cos
A