Prove 41n−14nis a multiple of 27.
LetP(n)=41n−14nis a multiple of 27for n = 1P(1)=411−141is a multiple of 27⇒27is a multiple of 27∴P(1)is trueLet P(n) be true for n = k ∴P(k)=41k−14kis a multiple of 27=41k−14k=27λFor n=k+1P(k+1)=41k+1−14k+1is a multiple of 27Now 41k+1−14k+1=41k+1−41k.14+41k.14−14k+1=41k(41−14)+14(14k−14k)=41k×27+14×27λ=27(41k+14λ)⇒41k+1−14k+1is a multiple of 27∴P(k+1)is truethus P(k) is true⇒P(k+1)is true