wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove by mathematical induction,
12+22+32+....+n2=n(n+1)(2n+1)6

Open in App
Solution

P(n):

12+22+32+........+n2=n(n+1)(2n+1)6

P(1):

12=1(1+1)(2(1)+1)6

1=66=1

LHS=RHS

Assume P(k) is true

P(k):

12+22+32+........+k2=k(k+1)(2k+1)6

P(k+1) is given by,

P(k+1):

12+22+32+........+(k+1)2=(k+1)((k+1)+1)(2(k+1)+1)6

(k+1)k(2k+1)+6(k+1)6=(k+1)(k+2)(2k+3)6

(k+1)2k2+7k+66=(k+1)(k+2)(2k+3)6

(k+1)(k+2)(2k+3)6=(k+1)(k+2)(2k+3)6

True for P(k+1)

Hence by Principle of mathematical induction

12+22+32+........+n2=n(n+1)(2n+1)6 is true for nN

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon