1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Proof by mathematical induction
Prove by Math...
Question
Prove by Mathematical induction
p
(
n
)
=
{
1
3
+
2
3
+
3
3
+
.
.
.
.
+
n
3
=
n
2
(
n
+
1
)
2
4
}
Open in App
Solution
To prove:-
p
(
n
)
⋅
1
3
+
2
3
+
3
3
+
.
.
.
.
.
.
.
.
.
.
.
.
.
+
n
3
=
n
2
(
n
+
1
)
2
4
Proof by mathematical induction
When
n
=
1
LHS :-
p
(
1
)
=
1
3
RHS:-
1
(
1
+
1
)
2
4
=
1
×
2
2
2
2
=
1
∴
p
(
1
)
is true.
Assume the result is true for
n
=
k
, that is
1
3
+
2
3
+
3
3
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
k
3
=
(
1
+
2
+
3
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
k
)
2
=
(
k
(
k
+
1
)
2
)
2
Now for
n
=
k
+
1
, then
1
3
+
2
3
+
3
3
+
.
.
.
.
.
.
.
.
.
+
n
3
=
1
3
+
2
3
+
3
3
+
.
.
.
.
.
.
.
.
.
+
(
k
+
1
)
3
=
(
1
+
2
+
3
+
.
.
.
.
.
.
.
.
+
k
)
2
+
(
k
+
1
)
3
=
[
k
(
k
+
1
)
2
]
2
+
(
k
+
1
)
3
=
(
k
+
1
)
2
4
(
k
2
+
4
k
+
4
)
=
(
k
+
1
)
2
(
k
+
2
)
2
4
=
(
k
+
1
)
(
k
+
2
)
2
2
=
(
1
+
2
+
3
+
.
.
.
.
.
.
.
.
.
.
.
.
+
(
k
+
1
)
)
2
Thus,
1
3
+
2
3
+
3
3
+
4
3
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
n
3
=
n
2
(
n
+
1
)
2
4
∀
n
∈
p
o
s
i
t
i
v
e
i
n
t
e
g
e
r
s
Suggest Corrections
0
Similar questions
Q.
Prove the following by using the principle of mathematical induction for all n ∈ N: