wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove by Mathematical induction
p(n)={13+23+33+....+n3=n2(n+1)24}

Open in App
Solution

To prove:-
p(n)13+23+33+.............+n3=n2(n+1)24
Proof by mathematical induction
When n=1
LHS :- p(1)=13
RHS:- 1(1+1)24=1×2222=1
p(1) is true.
Assume the result is true for n=k, that is
13+23+33+..............+k3=(1+2+3+..............+k)2=(k(k+1)2)2
Now for n=k+1, then
13+23+33+.........+n3
=13+23+33+.........+(k+1)3
=(1+2+3+........+k)2+(k+1)3
=[k(k+1)2]2+(k+1)3
=(k+1)24(k2+4k+4)
=(k+1)2(k+2)24
=(k+1)(k+2)22
=(1+2+3+............+(k+1))2
Thus,
13+23+33+43+..............+n3=n2(n+1)24npositiveintegers


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon