L.H.S = Cot A Cos A/(Cot A + Cos A)
= [(Cos A/Sin A)Cos A]/[(Cos A/Sin A)+Cos A]
= (Cos² A/Sin A)/[(Cos A+Sin A Cos A)/Sin A]
= Cos² A/Cos A(1+Sin A)
= Cos A/(1+Sin A)
= [Cos A(1-Sin A)]/[(1+Sin A)(1-Sin A)]
[multiplying the numerator and the denominator with (1-Sin A)]
= [Cos A(1-Sin A)]/(1-Sin² A)
= (Cos A-Cos A SinA)/Cos²A
= [(Cos A-Cos ASin A)/Sin A]/(Cos² A/Sin A)
[dividing the numerator and the denominator by Sin A]
= [(Cos A/Sin A)-(Cos A Sin A/Sin A)]/(Cos A/Sin A)Cos A
= (Cot A-Cos A)/Cot A CosA
L.H.S = R.H.S
Hence Proved