Prove that: 1secθ−1−1secθ+1=2cot2θ
To prove: 1secθ−1−1secθ+1=2cot2θ
Lets take LHS and then equate it to RHS.
LHS=1secθ−1−1secθ+1
=(secθ+1)−(secθ−1)(secθ−1)(secθ+1)
=secθ+1−secθ+1sec2θ−1
=2tan2θ
=2cot2θ
=RHS
(i) cosecθ+cotθcosecθ−cotθ=(cosecθ+cotθ)2=1+2cot2θ+2cosecθcotθ
(ii) secθ+tanθsecθ−tanθ=(secθ+tanθ)2=1+2tan2θ+2secθtanθ
Prove that:
tan(π4+θ)+tan(π4−θ)=2 sec 2θ