wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
cotA+cosecA1cotAcosecA+1=1+cosAsinA=cosecθ+cotθ=sinA1cosA

Open in App
Solution

cosecA+cotA1cotAcosecA+1
we know that,cosec²Acot²A=1
substituting this in the numerator,
cosecA+cotA(cosec²Acot²A)(cotAcosecA+1)
x²y²=(x+y)(xy)
cosecA+cotA(cosecA+cotA)(cosecAcotA)(cotAcosecA+1)
taking common
(cosecA+cotA)(1cosecA+cotA)(cotAcosecA+1)
cancelling like terms in numerator and denominator
we are left with cosecA+cotA=1sinA+cosAsinA=(1+cosA)sinA



flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon