wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x=cot2x

Open in App
Solution

sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x
=(sinxsin3x)+(sin5xsin7x)(cosxcos3x)(cosxcos7x)
=2cos2xsin(x)+2cos6xsin(x)2sin2xsinx2sin6xsinx
2sin(x)[cos2+cos6x]2sinx[sin2xsin6x]
2cos4(x)cos2x2cos4(x)sin(2x)
=cot(2x)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon