4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Proof by mathematical induction
Prove for n...
Question
Prove for
n
∈
N
.
1.3
+
2.3
2
+
3.3
3
+
.
.
.
+
n
.3
n
=
(
2
n
−
1
)
3
n
+
1
+
3
4
Open in App
Solution
Given
1.3
+
2.3
3
+
3.3
3
+
.
.
.
…
.
.
+
n
.3
n
=
(
2
n
−
1
)
3
n
+
1
+
3
4
For
n
=
1
L.H.S
=
1.3.
1
=
3
R.H.S
=
(
R
−
1
−
1
)
3.
1
+
1
+
3
4
=
1.3
2
+
3
4
=
9
+
3
4
=
12
4
=
3
∴
L.H.S=R.H.S
True for
n
=
1
Let
n
=
k
1.3
+
2.3
2
+
3.3
3
+
.
.
.
…
.
+
k
.3
k
=
(
2
k
−
1
)
.3
k
+
1
+
3
4
For
n
=
k
+
1
1.3
+
2.3
2
+
.
.
.
…
…
+
k
.3
k
+
(
k
+
1
)
.3
k
+
1
Upto k. put above value
=
(
2
k
−
1
)
.3
k
+
1
+
3
4
+
(
k
+
1
)
.3
k
+
1
=
(
2
k
−
1
)
.3
k
+
1
+
3
+
4
(
k
+
1
)
.3
k
+
1
4
=
3
k
+
1
(
2
k
−
1
+
4
k
+
4
)
4
=
3.
k
+
1
(
6
k
+
3
)
4
=
3
k
+
1
.3
(
2
k
+
1
)
+
3
4
=
3
k
+
1
(
2
(
k
+
1
)
−
1
)
+
3
4
Hence true for
n
=
k
+
1
.
Suggest Corrections
0
Similar questions
Q.
1.3
+
(
2.3
)
2
+
(
3.3
)
3
+
.
.
.
.
+
(
n
.3
)
n
=
(
2
n
−
1
)
3
n
+
1
+
3
4
Q.
Prove the following by using the principle of mathematical induction for all n ∈ N: