wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: (2n+7)<(n+3)2. for nN.

Open in App
Solution

Let p(n):(2n+7)<(n+3)2

For n=1

L.H.S=(2.1+7)=2+7=9

R.H.S=(1+3)2=42=16

Since 9 < 16

L.H.S < R.H.S

p(n) is true for n=1

Assume p(k) is true
(2k+7)<(k+3)2 ______ (1)
we will prove that p(k+1) is true
R.H.S=((k+1)+3)2
L.H.S=(2(k+1)+7)

L.H.S
[2(k+1)+7]
=2k+2+7
=(2k+7)+2

Using (1) : (2k+7)<(k+3)2
<(k+3)2+2
<k2+9+6k+2
<k2+6k+11
<k2+6k+11+(2k+5)
<k2+8k+16

R.H.S
[(k+1)+3]2
=(k+4)2
=k2+42+2.4.k
=k2+8k+16


L.H.S < R.H.S
p(k+1) is true whenever p(k) is true.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon