4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of Trigonometric Equation
Prove: sin2...
Question
Prove:
sin
2
(
π
4
−
x
)
+
sin
2
(
π
4
+
x
)
=
1
Open in App
Solution
L
H
S
=
sin
2
(
π
4
−
x
)
+
sin
2
(
π
4
+
x
)
=
[
sin
(
π
4
−
x
)
]
2
+
[
sin
(
π
4
+
x
)
]
2
=
[
sin
π
4
c
o
s
x
−
c
o
s
π
4
s
i
n
x
]
2
+
[
s
i
n
π
4
c
o
s
x
+
c
o
s
π
4
s
i
n
x
]
2
=
(
s
i
n
π
4
c
o
s
x
)
2
+
(
c
o
s
π
4
s
i
n
x
)
2
+
(
s
i
n
π
4
c
o
s
x
)
2
+
(
c
o
s
π
4
s
i
n
x
)
2
=
2
(
s
i
n
π
4
c
o
s
x
)
2
+
2
(
c
o
s
π
4
s
i
n
x
)
2
=
2
(
1
√
2
c
o
s
x
)
2
+
2
(
1
√
2
s
i
n
x
)
2
=
1
=
R
H
S
Suggest Corrections
1
Similar questions
Q.
Prove the following:
sin
2
(
π
4
−
x
)
(
sin
2
(
π
4
+
x
)
=
1
Q.
Prove that:
c
o
s
2
(
π
4
−
θ
)
−
s
i
n
2
(
π
4
−
θ
)
=
s
i
n
2
θ
Q.
Prove that
sin
2
π
6
+
cos
2
π
3
−
tan
2
π
4
=
−
1
2
.
Q.
Prove that
sin
2
π
6
+
cos
2
π
3
−
tan
2
π
4
=
−
1
2
Q.
Find the value of
s
i
n
2
π
8
+
s
i
n
2
π
4