Let P(n): 1 + 2 + ..... + n = n(n+1)2 be the given statement.
Step 1: Put n = 1
Then, L.H.S. = 1 and R.H.S. = 1(1+1)2=1
∴ L.H.S = R.H.S.
Step 2: Assume that P(n) is true for n = k.
∴1+2+3.....+k=k(k+1)2
Adding (k + 1) on both sides we get
1+2+3.....+k+(k+1)=k(k+1)2
=(k2+1)
=(k+1)(k+2)2
=(k+1)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯k+1+1)2
⇒P(n) is true n = k + 1
∴ By the principle of mathematical induction
p(n) istrue for all natural numbers n.
Hence, 1 + 2 + 3 + ..... + n = n(n+1)2 for all n ϵ N