1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of Coefficients of All Terms
Prove that ...
Question
Prove that
1
−
2
n
+
2
n
(
2
n
−
1
)
2
!
−
2
n
(
2
n
−
1
)
(
2
n
−
1
)
3
!
+
.
.
.
+
(
−
1
)
n
−
1
2
n
(
n
−
1
)
.
.
.
(
n
+
2
)
(
n
−
1
)
=
(
−
1
)
n
+
1
(
2
n
)
2
(
n
!
)
2
,
where n is a + ive integer.
Open in App
Solution
L.H.S.
=
S
=
1
−
2
n
C
1
+
2
n
C
2
−
.
.
.
.
.
.
+
(
−
1
)
n
−
1
2
n
C
n
−
1
n terms
Now we know that
2
n
C
0
=
1
=
2
n
C
2
n
2
n
C
1
=
2
n
C
2
n
−
1
etc.
∴
2
S
=
(
2
n
C
0
+
2
n
C
2
n
)
−
(
2
n
C
1
+
2
n
C
2
n
−
1
)
+
.
.
.
.
.
+
(
−
1
)
n
−
1
(
2
n
C
n
−
1
+
2
n
C
n
+
1
)
2
S
=
2
n
C
0
−
2
n
C
1
+
2
n
C
2
−
.
.
.
.
.
.
−
2
n
C
2
n
−
1
+
2
n
C
2
n
2n terms
Add
(
−
1
)
n
2
n
C
n
to both sides to make
(
2
n
+
1
)
terms
2
S
+
(
−
1
)
n
2
n
C
n
=
C
0
−
C
1
+
C
2
−
+
C
2
n
=
0
[ on putting x = -1 in the expansion of
(
1
+
x
)
2
n
which contains (2n + 1) terms ]
∴
S
=
−
1
2
(
−
1
)
n
2
n
C
n
=
(
−
1
)
n
+
1
(
2
n
)
!
2
(
n
!
)
2
=
R
.
H
.
S
.
Suggest Corrections
0
Similar questions
Q.
Prove that
1
+
2
n
3
+
2
n
(
2
n
+
2
)
3.6
+
2
n
(
2
n
+
2
)
(
2
n
+
4
)
3.6.9
+
.
.
.
.
.
=
2
n
{
1
+
n
3
+
n
(
n
+
1
)
3.6
+
n
(
n
+
1
)
(
n
+
2
)
3.6.9
+
.
.
.
.
}
Q.
If n is a positive integer, find the value of
2
n
−
(
n
−
1
)
2
n
−
2
+
(
n
−
2
)
(
n
−
3
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
2
n
−
6
+
.
.
.
.
.
;
and if n is a multiple of
3
,
show that
1
−
(
n
−
1
)
+
(
n
−
2
)
(
n
−
2
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
+
.
.
.
.
=
(
−
1
)
n
.
Q.
Find the sum of
1.
n
2
+
2
(
n
−
1
)
2
+
3
(
n
−
2
)
2
+
.
.
.
.
.
.
n
.1
2
Q.
If
n
and
p
be two
+
ive integers such that
n
≥
p
+
2
and
D
(
n
,
p
)
∣
∣ ∣ ∣
∣
n
C
p
n
C
p
+
1
n
C
p
+
2
n
+
1
C
p
n
+
1
C
p
+
1
n
+
1
C
p
+
2
n
+
2
C
p
n
+
3
C
p
+
1
n
+
2
C
p
+
2
∣
∣ ∣ ∣
∣
then prove that
D
(
n
,
p
)
=
n
+
2
C
3
p
+
2
C
3
D
(
n
−
1
,
p
−
1
)
Q.
Prove
that
1
n
+
1
+
1
n
+
2
+
.
.
.
+
1
2
n
>
13
24
,
for
all
natural
numbers
n
>
1
.
[NCERT EXEMPLAR]
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Explore more
Sum of Coefficients of All Terms
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app