Prove that 1+14+19+116+.....+1n2<2−12 for all n>2, n ϵ N.
Let P(n) : 1+14+19+116+.....+1n2<2−12 for all n≤2
For n = 2
1+14<2−14
=54<74
⇒ P(n) is true for n = 2.
Let P(n) is true for n = k.
1+14+19+116+.....+1k2<2−1(k+1)2<2−1(k+1)
Now,
1+14+19+116+.....+1k2+1(k+1)2<2−1k+1(k+1)2 [Using (1)]
<2−k2+2k+1−kk(k+1)2
<2−k2+k+1k(k+1)2
<2−k2+kk(k+1)2
<2−k(k+1)k(k+1)2
<2−1k+1
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all nϵN by PMI