Put 11+nx=t and split into two .
(C0−C1t+C2t2−C3t3+...)+x(−C1t+2C2t2−3c3t3+....)=A+xB
A=C0−C1t+C2t2+−C3t3+.... ......(1)
(1−t)n=(1−11+nx)n=(nx1+nx)n
In order to get B , we differentiate (1)
−n(1−t)n−1=−C1+2C2t−3C3t2+....
Multiply both sides by t
−n(1−t)n−1=−C1+2C2t−3C3t2+....=B
∴B=−n11+nx[1−11+nx]n−1
=−n1+nx(nx1+nx)n−1 ....(2)
∴A+xB
=(nx1+nx)n−nx1+nx(nx1+nx)n−1
=(nx1+nx)n−(nx1+nx)n=0