1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
Prove that 1+...
Question
Prove that
(
1
+
sinθ
)
(
1
-
sinθ
)
= (sec θ + tan θ)
2
.
Open in App
Solution
(
1
+
sinθ
)
(
1
-
sinθ
)
= (sec θ + tan θ)
2
LHS=
(
1
+
sin
θ
)
(
1
−
sin
θ
)
Multiplying the numerator and denominator by
(
1
+
sin
θ
)
,
we
get
:
(
1
+
sin
θ
)
2
1
−
sin
2
θ
=
1
+
2
sin
θ
+
sin
2
θ
cos
2
θ
[
∵
sin
2
θ
+
cos
2
θ
=
1
]
=sec
2
θ
+
2
×
sin
θ
cos
θ
×
sec
θ
+
tan
2
θ
=sec
2
θ
+
2
×
tan
θ
×
sec
θ
+
tan
2
θ
=
(
sec
θ
+tan
θ
)
2
=RHS
Hence proved
.
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
1
-
sin
θ
1
+
sin
θ
=
sec
θ
-
tan
θ
2