wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(1sinA+cosA)2=2(1+cosA)(1sinA)

Open in App
Solution

To prove: (1sinA+cosA)2=2(1+cosA)(1sinA)

Lets take LHS and then equate it to RHS.

LHS =(1sinA+cosA)2

=((1sinA)+cosA)2

=(1sinA)2+cos2A+2(1sinA)(cosA)

[(a+b)2=a2+b2+2ab]

=1+sin2A2sinA+cos2A+2(1sinA)(cosA)

=1+sin2A+cos2A2sinA+2(1sinA)(cosA)

=1+12sinA+2(1sinA)(cosA) [sin2A+cos2A=1]

=22sinA+2(1sinA)(cosA)

=2(1sinA)+2(1sinA)(cosA)

=2(1sinA)(1+cosA)

= RHS

Therefore, LHS = RHS.

Hence, (1sinA+cosA)2=2(1+cosA)(1sinA) proved.


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon