wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

1+tan(A)tan(A/2) = tan(A)cot(A/2)-1 = sec(A)

Open in App
Solution

LHS

= 1 + [ tan A. tan (A/2) ]

= 1 + [ sin A. sin (A/2) / cos A. cos (A/2) ]

= [ cos A. cos (A/2) + sin A. sin (A/2) ] / [ cos A. cos (A/2) ]

= [ cos ( A - (A/2) ) ] / [ cos A. cos (A/2) ]

= [ cos (A/2) ] / [ cos A. cos (A/2) ]

= 1 / ( cos A )

= sec A ........................................... (1)
.........................................

... RHS

= [ tan A. cot (A/2) ] - 1

= [ sin A. cos (A/2) / cos A. sin (A/2) ] - 1

= { [ sin A. cos (A/2) - cos A. sin (A/2) ] / [ cos A. sin (A/2) ] }

= { [ sin ( A - A/2 ) ] / [ cos A. sin (A/2) ] }

= [ sin (A/2) ] / [ cos A. sin (A/2) ]

= 1 / ( cos A )

= sec A

= LHS ...... from (1) ........................................... Q.E.D.
.........................................

Happy To Help !

flag
Suggest Corrections
thumbs-up
67
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon