wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

2cosπ13cos9π13+cos3π13+cos5π13=0

Open in App
Solution

We have L.H.S.

= 2 cos π13 cos 9π13+ cos 3π13+ cos 5π13

= cos (9π13+π13)+cos(9π13π13)+cos3π13+cos5π13

[ 2 cos A cos B = cos (A+B) + cos (A-B)]

= cos 10π13+ cos 8π13 + cos 3π13 + cos 5π13

= cos (π3π13)+cos(π5π13)+cos3π13+cos5π13

[cos(πθ)=cosθ]

=- cos 3π13cos5π13+cos3π13+cos5π13 = 0

= R.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon