Byju's Answer
Standard VIII
Mathematics
Dividing Terms with the Same Exponent
Prove that ...
Question
Prove that
3
2
n
+
7
is a multiple of
8
.
Open in App
Solution
Let
p
=
3
2
n
+
7
p
=
(
3
2
)
n
+
7
9
n
−
1
+
8
p
=
9
n
−
1
n
+
8
a
n
−
b
n
=
(
a
−
b
)
(
a
n
−
1
+
a
n
−
2
b
+
a
n
−
3
b
2
.
.
.
.
.
.
.
.
.
.
.
b
n
−
1
)
⇒
p
=
(
9
−
1
)
(
9
n
−
1
+
9
n
−
2
.1
+
9
n
−
3
1
2
.
.
.
.
.
.
.
.
.
.
.
1
n
−
1
)
+
8
⇒
p
=
8
(
9
n
−
1
+
9
n
−
2
.1
+
9
n
−
3
1
2
.
.
.
.
.
.
.
.
.
.
.
1
n
−
1
)
+
8
⇒
p
=
8
(
9
n
−
1
+
9
n
−
2
.1
+
9
n
−
3
1
2
.
.
.
.
.
.
.
.
.
.
.
1
n
−
1
+
1
)
which is mutiple of
8
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove that
n
(
n
+
1
)
(
n
+
5
)
is a multiple of
6
.
Q.
Prove that
5
k
−
5
is multiple of 4
Q.
3
2n
+7 is divisible by 8 for all n ∈ N.
Q.
Using PMI, prove that
3
2
n
+
2
−
8
n
−
9
is divisible by
64
.
Q.
Prove that
1
2
+
3
2
+
5
2
+
.
.
.
+
(
2
n
−
1
)
2
=
n
3
(
2
n
−
1
)
(
2
n
+
1
)
View More
Related Videos
Dividing Terms With the Same Exponent
MATHEMATICS
Watch in App
Explore more
Dividing Terms with the Same Exponent
Standard VIII Mathematics
Solve
Textbooks
Question Papers
Install app