wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 7+77+777+......+777.............ndigits7=781(10n+19n10)

Open in App
Solution

Let P(n) : 7+77+777+.....+777+.............ndigits+7=781(10n+19n10)

For n = 1

7=781(102910)

7=781(10019)

7=7

P(n) is true for n = 1

Let P(n) is true for n = k, so

7+77+777+......+777.............ndigits7=781

10k+19k10 ......(1)

We have to show that,

7+77+777+...+7777.............ndigits7+777.............(k+1)digits7=781[10k+29(k1)10]

Now,

{7+77+777+.....+777.............kdigits7}+777.............(k+1)digits7

=781[10k+19k10]+79(10k+11)

[Using equation (1)]

=7[10k+19k1081+19(10k+11)]

=781[10k+19k10+9.10k+19]

=781[10k+1(9+1)9(k+1)10]

P(n) is true for n = k + 1

P(n) is true for all nϵN by PMI.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon