Prove that 7+77+777+......+777.............n−digits7=781(10n+1−9n−10)
Let P(n) : 7+77+777+.....+777+.............n−digits+7=781(10n+1−9n−10)
For n = 1
7=781(102−9−10)
7=781(100−19)
7=7
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
7+77+777+......+777.............n−digits7=781
10k+1−9k−10 ......(1)
We have to show that,
7+77+777+...+7777.............n−digits7+777.............(k+1)digits7=781[10k+2−9(k−1)−10]
Now,
{7+77+777+.....+777.............k−digits7}+777.............(k+1)−digits7
=781[10k+1−9k−10]+79(10k+1−1)
[Using equation (1)]
=7[10k+1−9k−1081+19(10k+1−1)]
=781[10k+1−9k−10+9.10k+1−9]
=781[10k+1(9+1)−9(k+1)−10]
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all nϵN by PMI.