1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
Prove that ...
Question
Prove that
a
x
−
b
y
=
0
where
x
=
√
log
a
b
and
y
=
√
log
b
a
,
a
>
0
,
b
>
0
and
a
,
b
≠
1
.
Open in App
Solution
a
x
−
b
y
=
a
√
log
a
b
−
b
√
log
b
a
=
a
√
log
a
b
(
√
log
b
a
√
log
a
b
)
−
b
√
log
b
a
=
a
√
log
a
b
(
√
log
a
b
√
log
b
a
)
−
b
√
log
b
a
=
a
(
√
log
a
b
√
log
a
b
)
√
log
b
a
−
b
√
log
b
a
=
a
log
a
b
√
log
b
a
−
b
√
log
b
a
=
b
√
log
b
a
−
b
√
log
b
a
since
a
log
a
b
=
b
=
0
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove that
a
x
−
b
y
=
0
where
x
=
√
log
a
b
&
y
=
√
log
b
a
,
a
>
0
,
b
>
0
&
a
,
b
≠
1
Q.
Prove that
a
x
−
b
y
=
0
where
x
=
√
log
a
b
&
y
=
√
log
b
a
,
a
>
0
,
b
>
0
&
a
,
b
≠
1
Q.
Find the minimum value of
l
o
g
a
b
+
l
o
g
b
a
(where a and b are not equal to 1).
Q.
Prove
log
b
a
×
log
a
b
=
1
.
Q.
Prove that the line through the point
(
x
1
,
y
1
)
and parallel to the line
A
x
+
B
y
+
C
=
0
.
A
(
x
−
x
1
)
+
B
(
y
−
y
1
)
=
0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Higher Order Derivatives
MATHEMATICS
Watch in App
Explore more
Higher Order Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app