wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cos2α+cos2(α+β)2cosαcosβcos(α+β)=sin2β

Open in App
Solution

given, cos2α+cos2(α+β)2cosαcosβcos(α+β)

=cos2α+cos(α+β)(cos(α+β)2cosαcosβ)

=cos2αcos(α+β)(2cosαcosβcosαcosβ+sinαsinβ)

=cos2αcos(α+β)(cosαcosβ+sinαsinβ)

=cos2α(cosαcosβsinαsinβ)(cosαcosβ+sinαsinβ)

=cos2α(cos2αcos2βsin2αsin2β)

=cos2αcos2αcos2β+sin2αsin2β

=cos2α(1cos2β)+sin2αsin2β

=cos2αsin2β+sin2αsin2β

=sin2β(cos2α+sin2α)

=sin2β

Hence Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon