1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Standard Values of Trigonometric Ratios
Prove that ...
Question
Prove that
cos
38
o
cos
52
o
−
sin
38
o
sin
52
o
=
0
Open in App
Solution
Consider
cos
38
0
and
cos
52
0
which can be rewritten as follows:
cos
38
0
=
cos
(
90
0
−
52
0
)
=
sin
52
0
cos
52
0
=
cos
(
90
0
−
38
0
)
=
sin
38
0
(
∵
cos
(
90
0
−
x
)
=
sin
x
)
Therefore,
cos
38
0
cos
52
0
−
sin
38
0
sin
52
0
can be evaluated as shown below:
cos
38
0
cos
52
0
−
sin
38
0
sin
52
0
=
sin
38
0
sin
52
0
−
sin
38
0
sin
52
0
=
0
Hence,
cos
38
0
cos
52
0
−
sin
38
0
sin
52
0
=
0
.
Suggest Corrections
0
Similar questions
Q.
Show that
cos
38
o
cos
52
o
−
sin
38
o
sin
52
o
=
0
Q.
Prove that 0/0 =2
Q.
Prove that
0
!
=
1.
Q.
Prove that
∣
∣ ∣ ∣
∣
1
ω
ω
2
ω
ω
2
1
ω
2
1
ω
∣
∣ ∣ ∣
∣
=
0
Q.
Prove that:
∣
∣ ∣
∣
13
16
19
14
17
20
15
18
21
∣
∣ ∣
∣
=
0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Explore more
Standard Values of Trigonometric Ratios
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app