Prove that cosα+cos(α+β)+cos(α+2β)+.....+cos(α+(n−1)β)
=cos{α+n−12β}sin(nβ2)sinβ2 for all n ϵ N.
Let C = cos α+cos(α+β)+.....+cos(α+(n−1)β)
s=sinα+sin(α+β)+......+sin(α+(n−1)β)
Consider C+iS=eiα+ei(α+β)+.....+ei(α+(n−1)β)where i=√−1
C + iS =eiα[1+eiβ+ei2β+...+ei(n−1)β]
=eiα(einβ−1eiβ−1)
C+iS=ei(α+(n−1)β2)sin(nβ2)sin(β2)
Real term is
C=cos α+cos(α+β)+....+cos(α+(n−1)β)=cos{α+(n−1)β2}sin(nβ2)sin(β2)