wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15=127

Open in App
Solution

LHS=cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15=cosπ15cos2π15cos(π12π15)cos4π15cosπ3cos6π15cos(π8π15)=(cosπ15.cos2π15cos4π15cos(π8π15))(cosπ3)(cos(6π15).cos(8π15))=124.12122=127

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon