wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:-

Cos [tan​​​​-1{sin(cot​​​​-1​​x)}] = √1+x​​​​​​2/√2+x​​​​​​2

Open in App
Solution

sin (cot-1 {cos (tan -1x)})


tan-1 x = A => tan A =x


sec A = √(1+x2) ==> cos A = 1/√(1+x2) so A = cos-1(1/√(1+x2))


sin (cot-1 {cos (tan -1x)}) = sin (cot-1 {cos (cos-1(1/√(1+x2))})


=sin (cot-1 {(1/√(1+x2))})


if cot-1 {(1/√(1+x2))} = B


{(1/√(1+x2))} = cotB ==> cosec B = {(√[(2+x2)/(1+x2)])}


sin B = {(√[(1+x2)/(2+x2)]} ==> B = sin -1({(√[(1+x2)/(2+x2)]})


sin {sin -1 ({(√[(1+x2)/(2+x2)]})} = √[(1+x2)/(2+x2)]


the answer is √[(1+x2)/(2+x2)]

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon