wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(CosecAsinA)(secAcosA) =1tanA+cotA

Open in App
Solution

(cscAsinA)(secAcosA)=1tanA+cotA
L.H.S.-
(cscAsinA)(secAcosA)
=(1sinAsinA)(1cosAcosA)(cscA=1sinA&secA=1cosA)
=(1sin2AsinA)(1cos2AcosA)
=(cos2AsinA)(sin2AcosA)(sin2A+cos2A=1)
=sinAcosA.....(1)
Now R.H.S.-
1tanA+cotA
=1(sinAcosA)+(cosAsinA)
=1(sin2A+cos2AsinAcosA)
=sinAcosA.....(2)(sin2A+cos2A=1)
From eqn(1)&(2), we have
L.H.S. = R.H.S.
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon