L.H.S
cot(π2−2cot−13)
We know that
cot(π2−θ)=tanθ
Therefore,
⇒tan(2cot−13)
⇒tan(2tan−1(13))[∵cot−1x=tan−1(1x)]
⇒tan⎛⎜ ⎜ ⎜ ⎜ ⎜⎝tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜⎝2×131−(13)2⎞⎟ ⎟ ⎟ ⎟ ⎟⎠⎞⎟ ⎟ ⎟ ⎟ ⎟⎠[2tan−1x=tan−1(2x1−x2)]
⇒231−19
⇒2389
⇒2×93×8
⇒34
Hence, this is the answer.