1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
Prove that ...
Question
Prove that
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
.
Open in App
Solution
LHS
=
cot
θ
−
tan
θ
=
cos
θ
sin
θ
−
sin
θ
cos
θ
=
cos
2
θ
−
sin
2
θ
sin
θ
cos
θ
=
cos
2
θ
−
(
1
−
cos
2
θ
)
sin
θ
cos
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
=
R
H
S
Hence proved
Suggest Corrections
0
Similar questions
Q.
Show that:
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
Q.
Prove that:
2
cos
6
2
θ
−
1
sin
θ
cos
θ
=
cot
θ
−
tan
θ
Q.
Prove the following trigonometric identities.
(i)
cot
θ
-
tan
θ
=
2
cos
2
θ
-
1
sin
θ
cos
θ
(ii)
tan
θ
-
cot
θ
=
2
sin
2
θ
-
1
sin
θ
cos
θ