1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Greatest Binomial Coefficients
Prove that ...
Question
Prove that
1
2
C
1
−
2
3
C
2
+
3
4
C
3
−
4
5
C
4
+
.
.
.
.
.
.
+
(
−
1
)
n
+
1
⋅
n
n
+
1
=
1
n
+
1
Open in App
Solution
L.H.S =
(
1
−
1
2
)
C
1
−
(
1
−
1
3
)
C
2
+
(
1
−
1
4
)
C
3
.
.
.
+
(
C
1
−
C
2
+
C
3
−
C
4
+
.
.
.
)
−
(
C
1
2
−
C
2
3
+
C
3
4
−
.
.
.
)
Now
(
C
0
−
C
1
+
C
2
−
C
3
+
.
.
.
=
0
)
and
C
1
2
−
C
2
3
+
C
3
4
.
.
.
.
=
C
0
−
1
n
+
1
by 3 last page
∴
L
.
H
.
S
=
C
0
−
(
C
0
−
1
n
+
1
)
=
1
n
+
1
Suggest Corrections
0
Similar questions
Q.
C
0
+
2
C
1
+
3
C
2
+
4
C
3
+
.
.
.
+
(
n
+
1
)
C
n
=
(
n
+
2
)
2
n
−
1
Q.
Find
C
0
+
2
C
1
+
3
C
2
+
4
C
3
+
.
.
.
.
.
.
.
.
.
.
.
+
(
n
+
1
)
C
n
Q.
n
C
0
−
1
2
n
C
1
+
1
3
n
C
2
−
.
.
.
.
.
.
.
.
.
.
.
+
(
−
1
)
n
n
C
n
n
+
1
=