Prove that12+cot2(−θ)=12cosec2(−θ)−cot2(−θ)
Consider LHS=12+cot2(−θ)
Since, cosec2(−θ)−cot2(−θ)=1
Substitute above formula in denominator of given expression, we get
=12[cosec2(−θ)−cot2(−θ)]+cot2(−θ))
=12cosec2(−θ)−2cot2(−θ)+cot2(−θ))
=12cosec2(−θ)−cot2(−θ)
=RHS
Hence, proved .