1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Parametric Differentiation
Prove that: ...
Question
Prove that:
2
cos
6
2
θ
−
1
sin
θ
cos
θ
=
cot
θ
−
tan
θ
Open in App
Solution
2
c
o
s
2
θ
−
1
s
i
n
θ
.
c
o
s
θ
=
c
o
t
θ
−
t
a
n
θ
R.H.S :-
c
o
t
θ
−
t
a
n
θ
c
o
s
θ
s
i
n
θ
−
s
i
n
θ
c
o
s
θ
c
o
s
2
θ
−
s
i
n
2
θ
c
o
s
θ
s
i
n
θ
c
o
s
2
θ
−
(
1
−
c
o
s
2
θ
)
c
o
s
θ
s
i
n
θ
c
o
s
2
θ
−
1
+
c
o
s
2
θ
c
o
s
θ
.
s
i
n
θ
.
=
2
c
o
s
2
θ
−
1
s
i
n
θ
.
c
o
s
θ
.
=
L
.
H
.
S
.
Suggest Corrections
0
Similar questions
Q.
Prove that
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
.
Q.
Prove the following identities (1-17)
1
-
sin
2
θ
1
+
cot
θ
-
cos
2
θ
1
+
tan
θ
=
sin
θ
cos
θ
Q.
Show that:
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
Q.
Prove the following trigonometric identities.
(i)
1
+
sin
θ
-
cos
θ
1
+
sin
θ
+
cos
θ
2
=
1
-
cos
θ
1
+
cos
θ
(ii)
1
+
sec
θ
-
tan
θ
1
+
sec
θ
+
tan
θ
=
1
-
sin
θ
cos
θ