L.H.S.
We know that,
Using sine rule,
asinA=bsinB=csinC=k
⇒a=ksinA
⇒b=ksinB
⇒c=ksinC
So, putting in LHS.
k2sin2A−k2sin2BcosA+cosB+k2sin2B−k2sin2CcosB+cosC+k2sin2C−k2sin2AcosC+cosA
⇒k2(sin2A−sin2BcosA+cosB+sin2B−sin2CcosB+cosC+sin2C−sin2AcosC+cosA)
⇒k2(1−cos2A−1+cos2BcosA+cosB+1−cos2B−1+cos2CcosB+cosC+1−cos2C−1+cos2AcosC+cosA)
⇒k2(cos2B−cos2AcosA+cosB+cos2C−cos2BcosB+cosC+cos2A−cos2CcosC+cosA)
⇒k2((cosB−cosA)(cosA+cosB)cosA+cosB+(cosC−cosB)(cosB+cosC)cosB+cosC+(cosA−cosC)(cosC+cosA)cosC+cosA)
⇒k2(cosB−cosA+cosC−cosB+cosA−cosC)
⇒k2×0=0
R.H.S.
Hence, this is the answer.