wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
a2b2cosA+cosB+b2c2cosB+cosC+c2a2cosC+cosA=0

Open in App
Solution

L.H.S.

We know that,

Using sine rule,

asinA=bsinB=csinC=k

a=ksinA

b=ksinB

c=ksinC

So, putting in LHS.

k2sin2Ak2sin2BcosA+cosB+k2sin2Bk2sin2CcosB+cosC+k2sin2Ck2sin2AcosC+cosA

k2(sin2Asin2BcosA+cosB+sin2Bsin2CcosB+cosC+sin2Csin2AcosC+cosA)

k2(1cos2A1+cos2BcosA+cosB+1cos2B1+cos2CcosB+cosC+1cos2C1+cos2AcosC+cosA)

k2(cos2Bcos2AcosA+cosB+cos2Ccos2BcosB+cosC+cos2Acos2CcosC+cosA)

k2((cosBcosA)(cosA+cosB)cosA+cosB+(cosCcosB)(cosB+cosC)cosB+cosC+(cosAcosC)(cosC+cosA)cosC+cosA)

k2(cosBcosA+cosCcosB+cosAcosC)

k2×0=0

R.H.S.

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon