1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
Prove that ...
Question
Prove that
cos
A
cot
A
−
sin
A
tan
A
c
o
s
e
c
A
−
sec
A
=
1
+
sin
A
cos
A
Open in App
Solution
L
H
S
=
cos
A
cot
A
−
sin
A
tan
A
csc
A
−
sec
A
=
cos
2
A
sin
A
−
sin
2
A
cos
A
1
sin
A
−
1
cos
A
=
cos
3
A
−
sin
3
A
cos
A
−
sin
A
=
(
cos
A
−
sin
A
)
(
cos
2
A
+
cos
A
sin
A
+
sin
2
A
)
(
cos
A
−
sin
A
)
=
1
+
cos
A
sin
A
=
R
H
S
Suggest Corrections
0
Similar questions
Q.
Prove
that
cot
A
−
cos
A
cot
A
+
cos
A
=
cos
e
c
A
−
1
cos
e
c
A
+
1
Q.
Prove that:
1
−
sin
A
cos
A
cos
A
(
sec
A
−
csc
A
)
.
sin
2
A
−
cos
2
A
sin
3
A
+
cos
3
A
=
sin
A
Q.
Prove that:
1
−
sinAcosA
cos
A
(
sec
A
−
cosec
A
)
.
sin
2
A
−
cos
2
A
sin
3
A
+
cos
3
A
=
sin
A
Q.
Prove that
(
1
+
c
o
t
A
+
t
a
n
A
)
(
s
i
n
A
−
c
o
s
A
)
=
s
e
c
A
c
o
s
e
c
2
A
−
c
o
s
e
c
A
s
e
c
2
A
=
s
i
n
A
t
a
n
A
−
c
o
t
A
c
o
s
A
Q.
Prove the following trigonometric identities.
cot
A
-
cos
A
cot
A
+
cos
A
=
cosec
A
-
1
cosec
A
+
1