wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosA+sinA1cosAsinA+1=1cosecA+cotA, using the identity cosec 2Acot2A=1.

Open in App
Solution

We have, cosA+sinA1cosA(sinA1)×cosA+(sinA1)cosA+(sinA+1)

cos2A+(sinA1)2+2cosA(sin1)cos2A(sinA1)2

cos2A+sin2A+12sinA+2cosAsinA2cosAcos2Asin2A1+2sinA

=2(1sinA)+2cosA(sinA1)2sin2A+2sinA

=2(1cosA)(1sinA)2sinA(sinA1)=(1cosA)×(1+cosA)sinA(1+cosA)

sin2AsinA(1+cosA)=11sinA+cosAsinA

1cosecA+cotA

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon