LHS=(sinθ−cosθ+1sinθ+cosθ−1)×(sinθ+cosθ+1sinθ+cosθ+1)
=((sin2θ+1)2−cos2θ(sinθ+cosθ)2−1)
=(sin2θ+2sinθ+1−cos2θsin2θ+cos2θ+2sinθcosθ−1)
=(sin2θ+2sinθ+1−(1−sin2θ)2sinθcosθ)
=(2sin2θ+2sinθ2sinθcosθ)
=(sinθ+1cosθ)
=tanθ+secθ=RHS
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ