wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sinθcosθ+1sinθ+cosθ1=secθ+tanθ

Open in App
Solution


LHS=(sinθcosθ+1sinθ+cosθ1)×(sinθ+cosθ+1sinθ+cosθ+1)


=((sin2θ+1)2cos2θ(sinθ+cosθ)21)


=(sin2θ+2sinθ+1cos2θsin2θ+cos2θ+2sinθcosθ1)


=(sin2θ+2sinθ+1(1sin2θ)2sinθcosθ)


=(2sin2θ+2sinθ2sinθcosθ)


=(sinθ+1cosθ)


=tanθ+secθ=RHS



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon