1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Prove that : ...
Question
Prove that :
tan
3
A
−
cot
3
A
tan
A
−
cot
A
=
sec
2
A
+
cot
2
A
.
Open in App
Solution
tan
3
A
−
cot
3
A
tan
A
−
cot
A
=
sec
2
A
+
cot
2
A
L.H.S
=
tan
3
A
−
cot
3
A
tan
A
−
cot
A
Apply
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
=
(
tan
A
−
cot
A
)
(
tan
2
A
+
cot
2
A
+
tan
2
A
cot
2
A
)
(
tan
A
−
cot
A
)
=
tan
2
A
+
1
+
cot
2
A
=
sec
2
A
+
cot
2
A
[
∵
1
+
tan
2
A
=
s
e
c
2
A
]
=
R.H.S
Suggest Corrections
0
Similar questions
Q.
Prove that :
tan
3
A
−
cot
3
A
tan
A
−
cot
A
=
s
e
c
2
A
+
cot
2
A
.
Q.
Prove the following :
1
tan
3
A
−
tan
A
−
1
cot
3
A
−
cot
A
=
cot
2
A
Q.
1
t
a
n
3
A
−
t
a
n
A
−
1
c
o
t
3
A
−
c
o
t
A
=