wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
2cosπ13cos9π13+cos3π13+cos5π13=0

Open in App
Solution

LHS=2cosπ13cos9π13+cos3π13+cos5π13

=cos10π13+cos8π13+cos3π13+cos5π13 [2cosAcosB=cos(A+B)+cos(AB)]

=cos(π3π13)+cos(π5π13)+cos3π13+cos5π13 [cos(πθ)=cosθ]

=cos3π13cos5π13+cos3π13+cos5π13=0=RHS

Hence proved

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon