wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that cot3A=3cotAcot3A13cot2A

Open in App
Solution

cot3A=cos3Asin3A(1)
We know that
cos3A=4cos3A3cosA(2)
sin3A=3sinA4sin3A(3)
Substituting (2) and (3) in (1) we get
cot3A=4cos3A3cosA3sinA4sin3A
=cosA(4cos2A3)sinA(34sin2A)
=cotA(4cos2A334sin2A)
=cotA(4cos2A3×(sin2A+cos2A)3(sin2A+cos2A)4sin2A)(sin2A+cos2A=1)
=cotA(4cos2A3cos2A3sin2A3cos2A+3sin2A4sin2A)
=cotA(cos2A3sin2A3cos2Asin2A)
=cotA×sin2Asin2A(cos2A/sin2A33cos2A/sin2A1)
=cotA(cot2A33cot2A1)
=cot3A3cotA3cot2A1
=3cotAcot3A13cot2A
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon