wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
π20(2logsinxlogsin2x)dx

Open in App
Solution

Let I1=π20(2logsinxlogsin2x)dx
=π20(2logsinxlog2sinxcosx)dx
=π20(2logsinxlog2logsinxlogcosx)dx
=π20(logsinxlog2logcosx)dx
=π20logsinxdxπ20log2dxπ20logcosxdx ........(1)
Let I2=π20logcosxdx
using the property, a0f(x)dx=a0f(ax)dx
I2=π20logsinxdx
Put the value of I2 in (1)
I1=π20logsinxdxπ20log2dxπ20logsinxdx
I1=π20log2dx
=log2[x]π20
=log2[π20]
=π2log(12)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon