The correct option is
C log(ex+e−x)+cIntegrating the function
Let I=∫e2x−1e2x+1.dx
=∫ex−e−xex+e−x.dx (Usinge2x−1e2x+1=ex−e−xex+e−x)
Putting ex+e−x=t & dx=dtex−e−x
=∫ex−e−xt.dtex−e−x
=∫1t.dt
=log|t|+C
=log|ex+e−x|+C (Using t=ex+e−x)
I=log(ex+e−x)+C (As ex+e−x>0)